
 

 

 

 

 

 

 

Simulating Ligeti 
An Algorithmic Recreation of Loop in OpenMusic 
 

 

 

 

 

 

 

 

 

 

 

 

I Introduction 

 

Throughout the twentieth century there was a dramatic increase in musical works created 

through compositional process as opposed to compositional whim. This interest clearly 

starts with the combinatorial methods of the second Viennese school and runs through 

Boulez, Cage, Xenakis, Reich, and beyond. In order for compositional theory to be of any 

use we must move away from analyzing the results toward analyzing the process through 

which those results are achieved. By studying a musical work through statistical, 

algorithmic, and logical analysis we can better understand both the processes through 

which the work itself is created and the meaning buried beneath the notes. This paper is 

an attempt to do just that by studying the rhythmic parameter of Loop from György 

Ligeti’s Sonata for Solo Viola.  

 After a description of the general construction of Loop, exploring its generative  

form and its relationship to chaotic systems, I will take the reader through various steps to 

creating a method of generating algorithmic simulations of Loop. This method will 

involve a combination of Markov Analysis and programming logic using a LISP 

Graphical User Interface for composition called OpenMusic (OM).  By properly 

understanding the conditions which lead to successful simulations of Loop we are able to 

clearly distinguish the limits of its compositional process and the implementation of that 

process by an artistically sensitive composer such as Ligeti.  

 



II General Construction 

 

Loop is composed of a series of nine iterations of a 45-unit long string of dyads, preceded 

by a two bar introduction. The overall rhythmic scheme throughout Loop is divisible by a 

common denominator of one sixteenth note, with values ranging from 1-beat units to 8-

beat units. Beginning with  iteration one (heretofore referred to as I1) starting at bar 4, we 

have a rhythmically diverse presentation of the 45 dyads in a somewhat moderate rate. I1 

uses almost the entire gamut of rhythmic units with 2- through 8-beat units all making an 

appearance. As the work moves from I1 to I9 the rhythmic pattern morphs from moderate 

and varied to fast and regular, with an almost constant stream of 1-beat units occurring in 

I9. Table II.1 shows the entire sequence of 16
th

 note units as they move from I1 to I9 with 

their index (dyad #) in the top column.  

 What the data in Table II.1 show upon first inspection is the overall motion from 

rhythmic volatility in I1 to rhythmic standardization in I9. This motion is shown even 

more clearly when graphed as in Figure II.1, whereby each rhythmic value is plotted 

along the y-axis against its index in the x-axis. Graphed as such, the actual values are less 

interesting than the overall motion, we are able to see the trend from large variability and 

rhythmic value to flat, low value and almost completely even.  

 However, not only can we observe the data horizontally in iterative units, we can 

also see the transformation vertically of each dyad in the string. Thus a dyad such as 

number 14 occurs nine-times throughout Loop with the rhythmic sequence 3-3-2-2-2-1-1-

1-1.  When mapped individually, as in Figure II.2 for dyads 1 and 2, the generally 

rhythmic decay is still quite clear while the path with which that decay happens is more 

clearly represented. By comparing all 45 dyads mapped as such, two properties of the 

process become quite clear: 1) each dyad follows a random path of decay, and 2) each 

path of decay is unique to that dyad.  

 In general terms, we can say that Loop follows a generative process of decay 

whereby each atom (in our case any one of the 45 dyads) takes a random and unique path 

weighted towards 1-beat rhythmic units. The entire system, i.e. each iteration, moves 

from a chaotic state of high variability, entropy, and complexity to an almost totally 

ordered state of low variability, uniformity and simplicity. In nature this is the same 

general process of boulders becoming sand, mountains becoming plains, or snowflakes 

melting into water droplets.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 4 3 3 5 3 2 2 3 3 8 2 2 3 3 2 

2 3 3 5 8 3 3 2 2 2 2 2 2 3 3 3 

3 4 3 3 5 3 2 2 3 3 5 3 2 2 2 2 

4 2 2 3 3 2 2 2 2 2 2 3 3 2 2 1 

5 1 2 3 3 2 3 2 2 1 2 2 1 2 2 1 

6 1 2 1 1 2 1 1 2 2 2 1 1 2 1 1 

7 1 1 2 2 1 2 2 1 2 1 1 1 2 1 1 

8 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 

9 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 

 

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 2 2 2 4 6 3 2 3 4 6 2 2 2 2 2 

2 2 3 2 5 3 2 2 2 2 4 2 2 2 3 2 

3 2 3 2 3 2 2 2 2 2 3 2 2 1 2 2 

4 1 2 2 2 3 1 2 2 1 2 3 2 2 1 2 

5 1 2 2 2 3 2 1 2 3 3 2 2 1 2 2 

6 2 2 1 3 2 1 1 1 2 1 2 1 1 1 2 

7 1 2 1 2 2 1 2 1 2 2 1 2 2 2 1 

8 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

1 2 3 3 5 7 6 5 3 2 2 3 3 8 2 2 

2 3 2 2 3 3 5 3 2 2 3 3 2 2 2 2 

3 3 2 1 3 2 3 4 2 2 2 2 2 1 2 1 

4 3 2 1 2 3 4 3 1 1 2 2 2 2 2 2 

5 1 3 2 2 1 2 2 1 2 2 1 2 1 2 2 

6 2 1 3 2 3 2 2 1 2 2 1 2 1 2 1 

7 1 1 1 2 1 2 2 1 1 1 1 1 2 1 1 

8 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 

9 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 

Table II.1: Rhythmic Pattern  for Loop 

 



 
Figure II.1 General Rhythmic Transformation From I1 to I9  

 

 

 

 
Figure II.2 A: Rhythmic Decay of Dyad 1 

 

 
Figure II.2 B: Rhythmic Decay of Dyad 2 

 

 

 



   

 

III General Algorithmic Process 

 

 In order to simulate the rhythmic decomposition of Loop we need to mechanize 

the derivation of each iteration. Exactly how this is done is a matter of both careful 

planning and taste; however, a general value that each simulation should be both varied 

from and similar to the original will be kept. This means that we would like to create an 

algorithm, or mechanized composition process, that can give us a variety of  different 

solutions which all appear to be quite similar to the solution given by Ligeti. The general 

process of this algorithm is given in Figure III.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.1 General Algorithmic Process for Loop Simulations 

 

In the schemata above, the seed rhythm is represented as a diamond which indicates a 

“fed value” – a value which the user inputs, the functions are given in rectangles and the 

logical operator “is piece over?” is represented in an oval. These three types of actions 

represent the basic building blocks of all algorithmic processes. “Fed values” can be 

either manually placed into the system or randomly derived; however, all algorithmic 

processes need some kind of data to work. Functions provide the basic transformations 

and/or actions taken on the data received and can range in complexity. Logical operators 

act by asking questions and can produce various results based on the answers to those 

questions. In the general algorithm presented in Figure III.1 one could set any kind of 

  seed rhythm 

   rhythmic generator 
 

is piece over? 

collect result 

 

print all results 

 

yes 

no: repeat with 

new values 



value to answer the question “is piece over?”; however, for our purposes we will follow 

the model of Ligeti by stating that the work is finished after eight repetitions of “rhythmic 

generator”, taken with the seed value produces nine total iterations.  

 

 

IV Markov Analysis 

 

Given the rhythmic data provided by an iteration In of Loop it is possible to derive a very 

rough imitation by creating a simple probability distribution of all possible rhythmic 

events occurring. This is done by counting up the occurrences of each rhythmic unit and 

dividing by the total. For instance, I2 has 24 occurrences of 2-beat units, 16 occurrences 

of 3-beat units, 1 occurrence of a 4-beat unit, 3 occurrences of 5-beat units, and one 

occurrence of an 8-beat unit. Using this material we can create the probability distribution 

of I2 found in Table II.1.     

 

 2 3 4 5 8 

P(x) 24/45 16/45 1/45 3/45 1/45 

Table II.1: Probability Distribution for Rhythmic States in I2 

 

Using the “ChoixMultiple” function in OMAlea, we can randomly select any number of 

events following a given probability distribution (Figure II.1). We present the function (c) 

with a probability vector (a) representing the distribution from Table II.1 and a list of 

states (b) indexed to our probability vector. The function then randomly draws a state 

based on the probabilities of (a).    

 

 
Figure II.1: Using “choixmultiple” To Generate States 

 

By repeating this method 45 times we can create a somewhat satisfactory imitation of I2 

(Figure II.2, compared with the original). However successful this method is in 

synthesizing an imitation of a given In it fails miserably to produce a satisfactory 

imitation of the entire Loop process. This is because each state in a given iteration is not 

randomly drawn from a probability distribution but is generated from the equivalent state 

in the previous iteration. Each rhythmic state after I1 is imbued with a memory of its 

previous state in earlier iterations, the entire transformation from I1 to I9 is thus a 

Generative Process as opposed to a Random Process.   



 In order to deal with generative processes such as Loop we need a different 

approach to probability theory, one that takes into account the formulation “given State A 

what is the probability that State B will occur”. The method through which generative 

probability can be explored is known as “Markov Analysis”. As an analytical tool 

Markov analysis is similar to the method of probability distribution above; however, it  
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Figure II.2: I2 imitated with a simple probability distribution compared to original 

 

 

takes the set of probabilities of all initial states becoming resultant states. For Loop this 

means measuring not the occurrences of states in an iteration In but the transformations of 

states across two iterations (i.e. the probability of a X-beat unit from In-1 becoming a Y-

beat unit in In).  

 The most common method for presenting the resultant data is in what is known as 

a “Transition Table” whereby the initial states are listed vertically in the left-most column 

and the new states are listed horizontally on the top-most row. The probability of State A 

becoming State B is then filled in for each cell of the table. Table II.2 presents the 

transition table of a 1
st
 Order Markov Analysis of I2. By looking at an initial state from I1 

we can look up the probability that a given state will occur at the same dyad in I2.      

  

 1 2 3 4 5 6 7 8 

1 - - - - - - - - 

2 - 13/19 6/19 - - - - - 

3 - 4/7 5/14 - 1/14 - - - 

4 - 1/3 1/3 - 1/3 - - - 

5 - - 2/3 - - - - 1/3 



6 - - 1/3 1/3 1/3 - - - 

7 - - 1/1 - - - - - 

8 - 1/1 - - - - - - 

Table II.2: Transition Table I1 to I2 (1
st
 order Markov Analysis) 

  

This method can be expanded for all transitions I1 through I9 ddd 

 

 

 

 

 

Another way to present the results of a Markov analysis is in a map known commonly as 

a Markov Chain which shows the probability that any given state will become a resultant 

state. This method better suits an alternative approach that focuses on the transformation 

of each individual dyad as opposed to the total transformation from iteration to iteration 

of all dyads as in the 1
st
 order markov analysis above. Figure II.3 shows the Markov 

Chain of dyad 25 from I1 to I9 in Loop. The usefulness of this diagram lies in exposing 

the probability of possible paths of rhythmic decay given the information at hand and 

allowing the synthesizer to recreate an alternative path based on those data. Starting with 

an initial rhythmic value of 6 for I1, every simulation of dyad 25 will jump down to a 

rhythmic value of 4 by I2 and 3 by I3 due to the 100% probability of the transitions 

represented in the Markov Chain. From there the possibilities using 1
st
 order Markov 

Analysis double, the rhythmic value of I4 could be either 1 or 2 with equal probability. In 

this way, the original rhythmic value of 6 in I1 can randomly shifts until it reaches the 

end state (naturally, after passing through a rhythmic value of 1).   

 

      

 
Figure II.3  

 



 

 

 1 2 3 4 5 8 Total 

1 - - - - - - 0 

2 1/6 2/3 1/8 - 1/24 - 24 

3 - 9/16 5/16 1/8 - - 16 

4 - - 1/1 - - - 1 

5 - - 1/1 - - - 3 

8 - - - - 1/1 - 1 

Table 2: Transition Table I2 to I3 (1
st
 order) 

 

 1 2 3 4 5 Total 

1 1/4 3/4  - - - 4 

2 6/25 3/5 4/25 - - 25 

3 - 2/3 1/4 1/12 - 12 

4 - 1/2 1/2 - - 2 

5 - 1/2 1/2 - - 2 

Table 3: Transition Table I3 to I4 (1
st
 order) 

 

 1 2 3 4 Total 

1 2/7 4/7 1/7 - 7 

2 7/28 18/28 3/28 - 28 

3 1/3 1/3 1/3 - 9 

4 - 1/1 - - 1 

Table 4: Transition Table I4 to I5 (1
st
 order) 

 

 1 2 3 Total 

1 8/11 2/11 1/11 11 

2 10/27 15/27 2/27 27 

3 5/7 2/7 - 7 

Table 5: Transition Table I5 to I6 (1
st
 order) 

 

 1 2 Total 

1 6/11 5/11 22 

2 3/5 2/5 20 

3 2/3 1/3 3 

Table 6: Transition Table I6 to I7 (1
st
 order) 

 

 1 2 Total 

1 23/26 3/26 26 

2 15/19 4/19 19 

Table 7: Transition Table I7 to I8 (1
st
 order) 



 

 1 2 Total 

1 37/38 1/38 38 

2 5/7 2/7 7 

Table 8: Transition Table I8 to I9 (1
st
 order) 

 

((4800 5900) (5700 6200) (5500 6600) (6400 6900) (6200 7300) (6200 7200) (5500 

6800) (5500 6600) (6200 7500) (5500 7100) (4800 7000) (4800 6600) (4800 6400) (6200 

8000) (6200 7800) (6200 7700) (5500 7300) (5500 7100) (6200 7600) (4800 7000) (5500 

6900) (5500 6500) (6300 6900) (6200 7200) (5500 6800) (6600 6900) (6500 6900) (6100 

6200) (4800 5900) (5600 6200) (5500 6600) (6400 6900) (6200 7300) (5500 7700) (6200 

7000) (6200 7800) (5500 7300) (6900 7100) (6900 7000) (6600 6900) (6200 6400) (6800 

6900) (5500 6600) (6500 6900) (6300 6900)) 

 

(4 3 3 5 3 2 2 3 3 8 2 2 3 3 2 2 2 2 4 6 3 2 3 4 6 2 2 2 2 2 2 3 3 5 7 6 5 3 2 2 3 3 8 2 2) 

(3 2 3 3 2 2 2 2 2 2 2 2 2 2 3 2 2 2 5 3 2 3 2 2 4 2 3 2 3 2 2 3 3 3 3 5 8 3 2 2 2 3 2 2 2) 

(2 5 3 2 2 3 2 2 2 2 2 2 2 2 2 2 1 2 3 4 2 3 2 5 3 2 2 2 2 1 2 3 3 3 2 3 5 2 5 3 3 2 3 1 2) 

(2 3 2 2 2 2 2 1 3 1 3 2 2 3 1 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 1 2 3 1 3 3 3 1 3 1 1) 

(3 1 2 2 2 2 2 3 1 1 1 1 2 1 1 3 2 2 3 3 2 2 3 1 1 2 1 1 2 2 2 3 1 3 3 1 2 2 3 2 2 2 2 2 2) 

(1 1 3 2 2 2 2 1 1 1 1 1 1 1 3 1 2 2 1 1 1 1 1 2 1 1 1 2 2 3 3 1 3 2 1 1 2 2 1 2 2 1 2 1 2) 

(2 1 1 1 1 1 2 1 1 2 1 2 1 2 1 2 2 2 1 1 1 1 2 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 2 2 2 1 1 1 1) 

(1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1) 

(1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1) 
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